(ProgWerk) Creating Functions

Last updated on 2024-03-10 | Edit this page

Estimated time: 30 minutes

Overview

Questions

  • How can I define new functions?
  • What’s the difference between defining and calling a function?
  • What happens when I call a function?

Objectives

  • Define a function that takes parameters.
  • Return a value from a function.
  • Test and debug a function.
  • Set default values for function parameters.
  • Explain why we should divide programs into small, single-purpose functions.

At this point, we’ve seen that code can have Python make decisions about what it sees in our data. What if we want to convert some of our data, like taking a temperature in Fahrenheit and converting it to Celsius. We could write something like this for converting a single number

PYTHON

fahrenheit_val = 99
celsius_val = ((fahrenheit_val - 32) * (5/9))

and for a second number we could just copy the line and rename the variables

PYTHON

fahrenheit_val = 99
celsius_val = ((fahrenheit_val - 32) * (5/9))

fahrenheit_val2 = 43
celsius_val2 = ((fahrenheit_val2 - 32) * (5/9))

But we would be in trouble as soon as we had to do this more than a couple times. Cutting and pasting it is going to make our code get very long and very repetitive, very quickly. We’d like a way to package our code so that it is easier to reuse, a shorthand way of re-executing longer pieces of code. In Python we can use ‘functions’. Let’s start by defining a function fahr_to_celsius that converts temperatures from Fahrenheit to Celsius:

PYTHON

def explicit_fahr_to_celsius(temp):
    # Assign the converted value to a variable
    converted = ((temp - 32) * (5/9))
    # Return the value of the new variable
    return converted
    
def fahr_to_celsius(temp):
    # Return converted value more efficiently using the return
    # function without creating a new variable. This code does
    # the same thing as the previous function but it is more explicit
    # in explaining how the return command works.
    return ((temp - 32) * (5/9))
Labeled parts of a Python function definition

The function definition opens with the keyword def followed by the name of the function (fahr_to_celsius) and a parenthesized list of parameter names (temp). The body of the function — the statements that are executed when it runs — is indented below the definition line. The body concludes with a return keyword followed by the return value.

When we call the function, the values we pass to it are assigned to those variables so that we can use them inside the function. Inside the function, we use a return statement to send a result back to whoever asked for it.

Let’s try running our function.

PYTHON

fahr_to_celsius(32)

This command should call our function, using “32” as the input and return the function value.

In fact, calling our own function is no different from calling any other function:

PYTHON

print('freezing point of water:', fahr_to_celsius(32), 'C')
print('boiling point of water:', fahr_to_celsius(212), 'C')

OUTPUT

freezing point of water: 0.0 C
boiling point of water: 100.0 C

We’ve successfully called the function that we defined, and we have access to the value that we returned.

Composing Functions


Now that we’ve seen how to turn Fahrenheit into Celsius, we can also write the function to turn Celsius into Kelvin:

PYTHON

def celsius_to_kelvin(temp_c):
    return temp_c + 273.15

print('freezing point of water in Kelvin:', celsius_to_kelvin(0.))

OUTPUT

freezing point of water in Kelvin: 273.15

What about converting Fahrenheit to Kelvin? We could write out the formula, but we don’t need to. Instead, we can compose the two functions we have already created:

PYTHON

def fahr_to_kelvin(temp_f):
    temp_c = fahr_to_celsius(temp_f)
    temp_k = celsius_to_kelvin(temp_c)
    return temp_k

print('boiling point of water in Kelvin:', fahr_to_kelvin(212.0))

OUTPUT

boiling point of water in Kelvin: 373.15

This is our first taste of how larger programs are built: we define basic operations, then combine them in ever-larger chunks to get the effect we want. Real-life functions will usually be larger than the ones shown here — typically half a dozen to a few dozen lines — but they shouldn’t ever be much longer than that, or the next person who reads it won’t be able to understand what’s going on.

Variable Scope


In composing our temperature conversion functions, we created variables inside of those functions, temp, temp_c, temp_f, and temp_k. We refer to these variables as local variables because they no longer exist once the function is done executing. If we try to access their values outside of the function, we will encounter an error:

PYTHON

print('Again, temperature in Kelvin was:', temp_k)

ERROR

---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-1-eed2471d229b> in <module>
----> 1 print('Again, temperature in Kelvin was:', temp_k)

NameError: name 'temp_k' is not defined

If you want to reuse the temperature in Kelvin after you have calculated it with fahr_to_kelvin, you can store the result of the function call in a variable:

PYTHON

temp_kelvin = fahr_to_kelvin(212.0)
print('temperature in Kelvin was:', temp_kelvin)

OUTPUT

temperature in Kelvin was: 373.15

The variable temp_kelvin, being defined outside any function, is said to be global.

Inside a function, one can read the value of such global variables:

PYTHON

def print_temperatures():
    print('temperature in Fahrenheit was:', temp_fahr)
    print('temperature in Kelvin was:', temp_kelvin)

temp_fahr = 212.0
temp_kelvin = fahr_to_kelvin(temp_fahr)

print_temperatures()

OUTPUT

temperature in Fahrenheit was: 212.0
temperature in Kelvin was: 373.15

Readable functions


Consider these two functions:

PYTHON

def s(p):
    a = 0
    for v in p:
        a += v
    m = a / len(p)
    d = 0
    for v in p:
        d += (v - m) * (v - m)
    return numpy.sqrt(d / (len(p) - 1))

def std_dev(sample):
    sample_sum = 0
    for value in sample:
        sample_sum += value

    sample_mean = sample_sum / len(sample)

    sum_squared_devs = 0
    for value in sample:
        sum_squared_devs += (value - sample_mean) * (value - sample_mean)

    return numpy.sqrt(sum_squared_devs / (len(sample) - 1))

The functions s and std_dev are computationally equivalent (they both calculate the sample standard deviation), but to a human reader, they look very different. You probably found std_dev much easier to read and understand than s.

As this example illustrates, both documentation and a programmer’s coding style combine to determine how easy it is for others to read and understand the programmer’s code. Choosing meaningful variable names and using blank spaces to break the code into logical “chunks” are helpful techniques for producing readable code. This is useful not only for sharing code with others, but also for the original programmer. If you need to revisit code that you wrote months ago and haven’t thought about since then, you will appreciate the value of readable code!

Combining Strings

“Adding” two strings produces their concatenation: 'a' + 'b' is 'ab'. Write a function called fence that takes two parameters called original and wrapper and returns a new string that has the wrapper character at the beginning and end of the original. A call to your function should look like this:

PYTHON

print(fence('name', '*'))

OUTPUT

*name*

PYTHON

def fence(original, wrapper):
    return wrapper + original + wrapper

Return versus print

Note that return and print are not interchangeable. print is a Python function that prints data to the screen. It enables us, users, see the data. return statement, on the other hand, makes data visible to the program. Let’s have a look at the following function:

PYTHON

def add(a, b):
    print(a + b)

Question: What will we see if we execute the following commands?

PYTHON

A = add(7, 3)
print(A)

Python will first execute the function add with a = 7 and b = 3, and, therefore, print 10. However, because function add does not have a line that starts with return (no return “statement”), it will, by default, return nothing which, in Python world, is called None. Therefore, A will be assigned to None and the last line (print(A)) will print None. As a result, we will see:

OUTPUT

10
None

Selecting Characters From Strings

If the variable s refers to a string, then s[0] is the string’s first character and s[-1] is its last. Write a function called outer that returns a string made up of just the first and last characters of its input. A call to your function should look like this:

PYTHON

print(outer('helium'))

OUTPUT

hm

PYTHON

def outer(input_string):
    return input_string[0] + input_string[-1]

Rescaling an Array

Write a function rescale that takes an array as input and returns a corresponding array of values scaled to lie in the range 0.0 to 1.0. (Hint: If L and H are the lowest and highest values in the original array, then the replacement for a value v should be (v-L) / (H-L).)

PYTHON

def rescale(input_array):
    L = numpy.amin(input_array)
    H = numpy.amax(input_array)
    output_array = (input_array - L) / (H - L)
    return output_array

Testing and Documenting Your Function

Run the commands help(numpy.arange) and help(numpy.linspace) to see how to use these functions to generate regularly-spaced values, then use those values to test your rescale function. Once you’ve successfully tested your function, add a docstring that explains what it does.

PYTHON

"""Takes an array as input, and returns a corresponding array scaled so
that 0 corresponds to the minimum and 1 to the maximum value of the input array.

Examples:
>>> rescale(numpy.arange(10.0))
array([ 0.        ,  0.11111111,  0.22222222,  0.33333333,  0.44444444,
       0.55555556,  0.66666667,  0.77777778,  0.88888889,  1.        ])
>>> rescale(numpy.linspace(0, 100, 5))
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ])
"""

Defining Defaults

Rewrite the rescale function so that it scales data to lie between 0.0 and 1.0 by default, but will allow the caller to specify lower and upper bounds if they want. Compare your implementation to your neighbor’s: do the two functions always behave the same way?

PYTHON

def rescale(input_array, low_val=0.0, high_val=1.0):
    """rescales input array values to lie between low_val and high_val"""
    L = numpy.amin(input_array)
    H = numpy.amax(input_array)
    intermed_array = (input_array - L) / (H - L)
    output_array = intermed_array * (high_val - low_val) + low_val
    return output_array

Variables Inside and Outside Functions

What does the following piece of code display when run — and why?

PYTHON

f = 0
k = 0

def f2k(f):
    k = ((f - 32) * (5.0 / 9.0)) + 273.15
    return k

print(f2k(8))
print(f2k(41))
print(f2k(32))

print(k)

OUTPUT

259.81666666666666
278.15
273.15
0

k is 0 because the k inside the function f2k doesn’t know about the k defined outside the function. When the f2k function is called, it creates a local variable k. The function does not return any values and does not alter k outside of its local copy. Therefore the original value of k remains unchanged. Beware that a local k is created because f2k internal statements affect a new value to it. If k was only read, it would simply retrieve the global k value.

Mixing Default and Non-Default Parameters

Given the following code:

PYTHON

def numbers(one, two=2, three, four=4):
    n = str(one) + str(two) + str(three) + str(four)
    return n

print(numbers(1, three=3))

what do you expect will be printed? What is actually printed? What rule do you think Python is following?

  1. 1234
  2. one2three4
  3. 1239
  4. SyntaxError

Given that, what does the following piece of code display when run?

PYTHON

def func(a, b=3, c=6):
    print('a: ', a, 'b: ', b, 'c:', c)

func(-1, 2)
  1. a: b: 3 c: 6
  2. a: -1 b: 3 c: 6
  3. a: -1 b: 2 c: 6
  4. a: b: -1 c: 2

Attempting to define the numbers function results in 4. SyntaxError. The defined parameters two and four are given default values. Because one and three are not given default values, they are required to be included as arguments when the function is called and must be placed before any parameters that have default values in the function definition.

The given call to func displays a: -1 b: 2 c: 6. -1 is assigned to the first parameter a, 2 is assigned to the next parameter b, and c is not passed a value, so it uses its default value 6.

Readable Code

Revise a function you wrote for one of the previous exercises to try to make the code more readable. Then, collaborate with one of your neighbors to critique each other’s functions and discuss how your function implementations could be further improved to make them more readable.

Key Points

  • Define a function using def function_name(parameter).
  • The body of a function must be indented.
  • Call a function using function_name(value).
  • Numbers are stored as integers or floating-point numbers.
  • Variables defined within a function can only be seen and used within the body of the function.
  • Variables created outside of any function are called global variables.
  • Within a function, we can access global variables.
  • Variables created within a function override global variables if their names match.
  • Use help(thing) to view help for something.
  • Put docstrings in functions to provide help for that function.
  • Specify default values for parameters when defining a function using name=value in the parameter list.
  • Parameters can be passed by matching based on name, by position, or by omitting them (in which case the default value is used).
  • Put code whose parameters change frequently in a function, then call it with different parameter values to customize its behavior.